
Case Study
DEVELOPING 'THE D.R.G. INITIATIVE' WITH AMAZON LUMBERYARD

Graham Watson
Director & Co-founder

Third Kind Games3rd July 2017



Introduction

ÅTalk about our hands-on experience using Amazon Lumberyard to 
ÄÅÖÅÌÏÐ Ȭ4ÈÅ $Ȣ2Ȣ'Ȣ )ÎÉÔÉÁÔÉÖÅȭȢ

ÅHighlight some of the new systems that Amazon have introduced, 
and how we have made use of them.

ÅTalk about challenges we faced along the way.

ÅTips on making a multiplayer E-sports title with Amazon Lumberyard.



Who are we?

ÅThird Kind Games (TKG).

ÅNew indie studio, formed October 2016.

Å9 Senior AAA developers from former Activision Studio 
FreeStyleGames(DJ Hero, Guitar Hero Live).

Å1 Artist, 1 Designer, 1 Producer, 5 Programmers, 1 Tools/IT 
Programmer.

ÅDeveloper on SlingShot#ÁÒÔÅÌȭÓ Ȭ4ÈÅ $Ȣ2Ȣ'Ȣ )ÎÉÔÉÁÔÉÖÅȭȢ

www.thirdkindgames.com https://www.facebook.com/thirdkindgames/ https://twitter.com/ThirdKindGames

http://www.thirdkindgames.com/
https://www.facebook.com/thirdkindgames/
https://twitter.com/ThirdKindGames


7ÈÁÔ ÉÓ Ȭ4ÈÅ $Ȣ2Ȣ'Ȣ )ÎÉÔÉÁÔÉÖÅȭȩ

ÅNew E-sports game from 
SlingShotCartel, built with 
Amazon Lumberyard.

ÅIn development for 8 months so 
far. Pre-release later this year.

ÅTeam-based fight-to-the-death 
TV show, set in a future post-
apocalyptic world.

ÅDesigned and built with E-
sports in mind from the ground 
up.



7ÈÁÔ ÉÓ Ȭ4ÈÅ $Ȣ2Ȣ'Ȣ )ÎÉÔÉÁÔÉÖÅȭȩ

ÅLarge, beautiful environments.

ÅMultiple factions with their own 
unique skills and play styles.

ÅAudience participation via 
Twitch. Voting for key game 
events such as loot drops.

ÅGamemaster role controls 
broadcasting, audience 
participation, and match 
direction.



Why Lumberyard?
ÅAcquired from CryTek, Amazon started with a mature and proven engine, so 
ÔÈÅÙ ×ÅÒÅÎȭÔ ÐÌÁÙÉÎÇ ÃÁÔÃÈ ÕÐȢ

ÅSignificant technical investment from Amazon. Large internal engine team, 
as well as multiple internal Amazon studios building games with the engine.

ÅHeavy focus on E-sports and multiplayer gaming features from the start. 

ÅAmazon owns Twitch, AWS, Gamelift, and continue to grow in the 
multiplayer gaming arena. Lumberyard makes it easy to tap in to these 
technologies.

ÅYoung engine, opportunity to provide steer and not have to ride the wake of 
larger studios.

ÅFull source code means that we can modify the engine, fix bugs, and make 
tweaks without large production overheads.



Working with a Beta engine

PROS

ÅFull source code means you can modify the 
engine and fix any bugs.

Å-ÏÄÅÒÎ ÃÏÄÅ ÁÒÃÈÉÔÅÃÔÕÒÅȟ ÄÅÓÉÇÎÅÄ ÆÏÒ ÔÏÄÁÙȭÓ 
ÁÎÄ ÔÏÍÏÒÒÏ×ȭÓ ÈÁÒÄ×ÁÒÅȢ

ÅRegular releases containing new features and 
bug fixes.

ÅResponsive support from an upbeat dev team.

ÅNo baggage from heavy-weight ancient games. 
Direction of engine is unrestrained as Amazon 
are free to deprecate and upgrade old systems.

ÅAll the new stuff is much better than the old 
stuff!

CONS

ÅThere are bugs!

ÅSometimes, core systems may change with 
new releases.

ÅSome features are missing or not production-
ready.

ÅCommunity is small, but growing.

ÅLots of deprecated systems hanging around in 
the code base.

ÅSometimes there is duplication of types, 
requiring conversion, e.g. string.



Feature highlight - Twitch

ÅTwitch Chatplay, Voting and JoinIn.

ÅEnables audience participation in 
the game.

ÅGame asks the audience to vote.

ÅTwitch chat votes are tallied up 
automatically and reported to the 
game.

ÅGame makes decisions based on 
the voting results.



Feature highlight - Metastream
ÅAllows Twitch broadcasters to 

completely customise their 
channel with bespoke game 
overlays.

ÅGame provides a HTTP server 
which can be queried via a RESTful 
JSON API.

ÅWeb browser can query game 
details and render them via 
HTML/Javascript/etc.

ÅBroadcasting software such as 
OBS Studio and XSplitBroadcaster 
can overlay the HTML on to the 
broadcast stream.



Feature highlight ɀComponent Entities

ÅModern component-based 
entity system.

ÅSupports C++ and Lua 
components.

ÅRich set of UI widgets for 
component properties.

ÅXML format, so can be merged 
easily in source control.

ÅEver-growing list of stock 
components.



Feature highlight - Gems

ÅGems are reusable nougats of 
code and/or assets, which 
provide features to the game.

ÅA Gem can contain 
components, scripts, assets, 
event buses, and systems.

ÅEncourage separation of 
purpose, and well-defined 
inter-system communication.

ÅMakes you code with reuse in 
mind.



Feature highlight ɀEvent Bus

ÅEvent bus (ebus) provides a clear and efficient mechanism to 
communicate between classes and components.

ÅWorks across Gems, hiding the bother of dll export/import 
configurations.

ÅWorks from Lua and C++.

C++

Lua



Feature highlight - Profiler
ÅCPU, VRAM, and network profiler:

http://docs.aws.amazon.com/lumberyard/latest/developerguide/profiler-intro.html

http://docs.aws.amazon.com/lumberyard/latest/developerguide/profiler-intro.html


Feature highlight ɀLua IDE
ÅLua Editor and Debugger:

http://docs.aws.amazon.com/lumberyard/lat
est/developerguide/lua-editor-
debugger.html

ÅLive link to engine.

ÅSingle-step debugger.

ÅBuilt-in class and event browser.

http://docs.aws.amazon.com/lumberyard/latest/developerguide/lua-editor-debugger.html


Feature highlight ɀUI Editor

ÅResponsive, 
dynamic UI.

ÅAnimation 
support.

ÅComponent 
based and 
extensible.

ÅScripting 
support via Lua.



Ȭ4ÈÅ $Ȣ2Ȣ'Ȣ )ÎÉÔÉÁÔÉÖÅȭ 'ÁÍÅ ÂÒÅÁËÄÏ×Î

Å~30 bespoke Gems providing additional features to the engine.

Å~24 bespoke entity components providing custom entity features.

Å~50 Lua scripts providing the high level gameplay logic, entity logic, 
and game rules.

Å~51 Flow modules providing UI flow, high level gameplay logic, and 
game rules.



Gems

AMAZON GEMS

ÅAWS

ÅAudio

ÅBoids

ÅCamera

ÅChatPlay

ÅFront End

ÅGame Effects

ÅGameLift

ÅInput

ÅLightning

ÅMetastream

ÅMultiplayer

ÅSubstance

ÅPhysics

ÅRain

ÅSnow

ÅTornadoes

THIRD KIND GEMS

ÅBallistics

ÅCharacter

ÅCinematographer

ÅCompass

ÅAI

ÅAnalytics

ÅFlightRecorder

ÅFootsteps

ÅInventory

ÅLevelManager

ÅMatchManager

ÅMinimap

ÅOnline

ÅPlayerManager

ÅPopupText

ÅSpawnPoint

ÅSteam

ÅSurfaceMarkup

ÅUtilities



Network model

ÅLAN play with direct IP entry and session browser.

ÅGameliftsupport with Linux dedicated server supported out-of-the-box.

ÅRPCs (remote procedure calls, guaranteed delivery) used for important 
events such as shooting, aiming, health, etc.

ÅDatasets (synchronised data blocks, eventual synchronisation), used for 
state synchronisation such as character movement.

ÅCustom motion prediction to allow clients to predict and correct the 
character motion between server updates.

ÅServer rewind to allow accurate server-authoritative hit detection.



Game rules

ÅGame rules define the overall gameplay logic such as match win/lose conditions, 
gameplay events, player join/leave rules, etc.

ÅOld CryEngine game rules system still exists, but is considered deprecated.

ÅAmazon have not yet replaced it with anything, so custom solution needed.

ÅOur game rules are built from a FlowGraphwhich is programmatically instantiated 
when the level starts.

ÅFlow graph is responsible for player tracking and general gameplay event handling.

ÅFlow graph is NOT good for gameplay logic such as checking if all players on a team 
are dead. Instead, we kick off a Lua script from our Flow graph, that provides the 
more complex game rules that benefit from scripting rather than Flow nodes.



Player management
ÅPlayer management is the bookkeeping and co-ordination of players within a game session.

Å/ÌÄ #ÒÙ%ÎÇÉÎÅ Ȭ!ÃÔÏÒ 3ÙÓÔÅÍȭ ÓÔÉÌÌ ÅØÉÓÔÓȟ ÂÕÔ ÉÓ ÃÏÎÓÉÄÅÒÅÄ ÄÅÐÒÅÃÁÔÅÄȢ

ÅAmazon have not yet replaced it with anything, so custom solution needed.

ÅOur Player Management Gem fulfils this by providing a bespoke C++ system to track players.

ÅIt consists of a system component that handles networking events and uses RPCs and Data Sets to 
keep the player list synchronised between all clients in a session.

Å)Ô ÈÏÌÄÓ ËÅÙ ÄÁÔÁȟ ÓÕÃÈ ÁÓ ÔÈÅ ÐÌÁÙÅÒȭÓ ÃÈÏÓÅÎ ÃÈÁÒÁÃÔÅÒÓȟ ÃÕÒÒÅÎÔ ÐÏÓÓÅÓÓÅÄ ÃÈÁÒÁÃÔÅÒȟ ÁÎÄ ÒÅÁÄÙ-
state.

Å)Ô ÃÏÍÍÕÎÉÃÁÔÅÓ ËÅÙ ÐÌÁÙÅÒ ÅÖÅÎÔÓ ÔÏ ÏÔÈÅÒ 'ÅÍÓȟ ÓÕÃÈ ÁÓ ȬÐÌÁÙÅÒ ÊÏÉÎÅÄȭȢ

ÅImplemented with security in mind ɀServer is authoritative, and clients can only modify their own 
player data, with all the other players being synchronised to them from the server.



Characters
Å A DRG character is made up of components and Lua 

scripts.

Å Heavy use of Lua scripts (9 scripts per character) to 
ÃÏÎÔÒÏÌ ÈÏ× ÔÈÅ ÃÈÁÒÁÃÔÅÒȭÓ ÃÏÍÐÏÎÅÎÔÓ ÉÎÔÅÒÁÃÔ 
with one another and in response to external stimuli 
such as controller input or damage.

Å Characters are stored on disc as Dynamic Slices 
(runtime-instantiated prefabs), and spawned in to 
the level by the game rules Flow graph on the server 
at the start of the match.

Å The server then assigns the newly created entities to 
the players via the Player Manager Gem. 

Å The entities are replicated to the clients via 
GridMate, and clients assume control of their 
characters.



Multiplayer tips

ÅBuild with security and anti-cheat in mind.

ÅServer-authoritative, plus prediction/correction on clients to avoid lag.

ÅDesign your client-server communication with anti-cheat in mind, e.g. send 
inputs vs. send transform. 

ÅMinimise client touchable data, for example ensure that a client can only send 
ÄÁÔÁ ÁÂÏÕÔ ÉÔÓ Ï×Î ÐÌÁÙÅÒȭÓ ÃÈÁÒÁÃÔÅÒÓȢ

ÅUse Datasets for state, and RPCs for important events.



Multiplayer tips

ÅOptimise your data. Bandwidth 
costs money!

ÅUse the network profiler:
http://docs.aws.amazon.com/lumbery
ard/latest/developerguide/network-
profilers.html

ÅTest in low bandwidth, high 
latency situations. 

ÅUse the network simulator:
http://docs.aws.amazon.com/lumbery
ard/latest/developerguide/network-
carrier.html


